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Abstract—This paper presents an efficient technique to eval-
uate the Green’s functions of single-layer and multilayer struc-
tures. Using the generalized pencil of function method, a Green’s
function in the spectral domain is accurately approximated by a
short series of exponentials, which represent images in spatial do-
main. New compact closed-form spatial-domain Green’s functions
are found from these images using several semi-infinite integrals
of Bessel functions. With the numerical integration of the Sommer-
feld integrals avoided, this method has the advantages of speed and
simplicity over numerical techniques, and it leads to closed-form
expressions for the method-of-moments matrix coefficients. Nu-
merical examples are given and compared with those from numer-
ical integration.

Index Terms—Complex image method, layered, method of mo-
ments, multilayered, Sommerfeld integrals.

I. INTRODUCTION

M ICROSTRIP structures are widely used in the hybrid
and monolithic microwave integrated circuits (MICs)

and microstrip antennas. Numerical modeling of such structures
can be efficiently and rigorously performed using the method
of moments (MoM). This method requires the computation of
Green’s functions for layered or multilayered structures, which,
in the spatial domain, include oscillatory integrals with infinite
limits, i.e., Sommerfeld integrals (SIs).

In modeling microstrip structures using the MoM, much ef-
fort has been devoted to the computation of the Green’s func-
tions because the computation of SIs are very time consuming.
The following three methods can be found in the literature for
the evaluation of SIs:

1) numerical integration method;
2) symptotic method;
3) discrete complex image method.

The numerical integration method, described in [1] and [2], is
suitable only when the field points are very close to the source
points. Generally, this method requires the largest computation
time because the integrands are oscillatory. The asymptotic
method [3] is the fastest, but it is also the least accurate espe-
cially when the field points are close to the source points. They
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are also complicated and cannot be directly used for multilayer
microstrip structures. To address these limitations, a method
based on the Sommerfeld identity, called the discrete image
method, has been developed [4], [5]. This method first extracts
all the quasi-static and surface-wave contributions from the
spectral-domain Green’s function, and then approximates the
remainder by a series of exponentials using the Prony’s method
[5]. These quasi-static parts, surface-wave parts, and exponen-
tials are interpreted as images with complex displacements, or
complex images. By using the Sommerfeld identity, the Som-
merfeld integration is done analytically. This discrete image
method was improved by Aksun [6], who uses a two-level
method and the generalized pencil of function (GPOF) method
[7] to approximate the spectral domain without extracting the
quasi-static and surface-wave contributions. This method’s
accuracy depends on the accuracy of the approximation by the
series of exponentials, and the GPOF method [7] was found to
be very accurate for this purpose. The only previous complex
image method that gives closed-form derivatives of the Green’s
functions is due to [8].

In this paper, we present a new complex image method based
on a class of semi-infinite integrals of Bessel functions. Our
method can be applied to evaluate both the Green’s functions
and their derivatives and gives accurate results efficiently. New
closed-form expressions for the Green’s functions, and their
derivatives, can be obtained using this method. When this
method is used in conjunction with the MoM, one can derive
closed-form expressions for the MoM matrix elements directly.
Unlike previous complex image methods, this method does not
require a second Taylor-series approximation for this purpose.

II. SPATIAL-DOMAIN GREEN’S FUNCTIONS OF

MULTILAYER STRUCTURES

Consider a current source in a multilayer medium shown
in Fig. 1. The source can be-, -, or -directed. Each layer
can have different electric and magnetic properties and
thickness . The field point can be located in an arbitrary
layer. The electric field due to the current can be expressed in a
mixed potential form as

(1)

where denotes the electric current density of the source and
and are the spatial-domain Green’s functions associated

with the vector and scalar potentials, respectively. The details on
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Fig. 1. Multilayer planar structure.

for a horizontal source have been discussed in [9], [10], and
[11], and one may represent it as

(2)

All of the above various forms of spatial-domain Green’s func-
tions and their derivatives can be represented in the
following shorthand form:

(3)

where is the Hankel function of the second kind andth
order, is the radial distance in the- -plane between the field
points and source points, is the radial propagation constant in
the - -plane, and is the integration path. The function
is the spectral-domain Green’s function, which can be obtained
analytically for a multilayer medium.

In practical applications, type integrals arise when the
derivatives of Green’s functions are involved. In the MoM, often
the derivatives of the Green’s functions can be combined with
the basis and testing functions and then, by using the integra-
tion by parts, they can be converted to type integrals.
However, there exist some cases in which this conversion is not
possible and then one has to integrate type integrals.

III. N EW COMPLEX IMAGE METHOD

A. Theory

By using the integral relationship, we rewrite integral (3) as
[1]

(4)

where is the Bessel function of the first kind andth order.
The SIs like (3) and (4) cannot be evaluated analytically. In

previous complex image methods, the spectral-domain Green’s
function was approximated by a series of complex expo-
nentials as

(5)

where is the propagation constant in free
space, and and were unknown coefficients to be deter-
mined using an approximation technique. The Sommerfeld
identity was then used to obtain a closed-form solution for the
integral in (3) as follows:

(6)

where . By substituting approximation (5) into
(4) and using (6), one obtains

(7)

where . Details of this method can be found in
[5]. Although can be obtained from the derivative of (7)
[8], this method cannot be used directly to derive closed-form
expressions for the MoM matrix elements.

In this paper, we use a different series expansion. Using a
class of semi-infinite integrals of Bessel functions, we then de-
rive the closed-form solutions of SIs for both the
and cases. The resulting expressions are simpler than
those from previous methods and they can be used directly in
conjunction with the MoM. Suppose we can approximate the
function by a sum of complex exponentials

(8)

where are the unknown coefficients and exponents. They
are obtained by the application of an approximation technique,
such as the GPOF method, as explained in Section III-B.
Rewriting (4), we have

(9)

The right-hand side of (9) is a semi-infinite integral of Bessel
functions, which can be solved analytically using the following
semi-infinite integrals of Bessel functions:

(10)

(11)

After the analytical integration, one obtains the following
closed-form expressions for :

(12)

(13)

Generally, the use of Bessel integrals (10) and (11) leads to good
results. However, there are other Bessel integrals that may also
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Fig. 2. Integration contoursL andL on the complexk -plane.

be used in this method. Four such alternative integrals of Bessel
functions are given in the Appendix. Each choice leads to a dif-
ferent closed-form Green’s function.

The use of the two closed-form Green’s functions (12) and
(13) in conjunction with the MoM gives rise to closed-form ex-
pressions for MoM matrix elements. Hence, a significant im-
provement in the matrix-fill time can be achieved.

B. Two-Level Approximation of the Spectral-Domain Green’s
Functions

The accuracy of this method in general depends on the accu-
racy of the approximation of spectral-domain Green’s functions
using complex exponentials.

In this section, we will discuss how we approximated the
spectral-domain Green’s functions. We have selected an inte-
gration path suitable for (10) and (11) and used a two-level ap-
proximation technique [6] to perform the approximation in a ro-
bust fashion. It should be noted that the complex images in our
method are distributed on the complex-plane, while the im-
ages obtained in the previous method [5], [6] are on the complex

-plane. We then used (10) and (11) to complete the integra-
tion. We selected the integration path shown asin Fig. 2,
which is different from the arc and line path used in previous
methods [6].

The integration can be performed along the real axison the
complex -plane or along a deformed path passing through
the origin and lying in the first and third quadrants, as shown in
Fig. 2. The integration path can be deformed to since no
singularity is encountered in the deformation. Since the function

is close to zero when the is large enough, we choose
a finite integration path , which is composed of two straight
lines.

The parametric equations of the two straight lines are

(14)

where and are the two values on the real axis of the com-
plex -plane corresponding to the ends of the two straight lines
(1 and 2 in Fig. 2) and is the gradient of the straight line 1.
By selecting suitable values for the parameters and ,
good results can be obtained.

For the approximation, the GPOF method [7] is a good
choice because we do not need to consider the quasi-static
images and surface-wave poles (SWPs) when performing
the approximation of the spectral-domain Green’s functions.
However, for some reasons, which have been discussed in [6],
it is difficult to make the approximation in properly. One
of the reasons is that the propermay be very large, and we
need a large number of samples to perform the approximation,
which is not a robust approach. After investigating the spectral-
domain Green’s functions, we decided to use a two-level
approximation, as explained below. The first part of the ap-
proximation is performed along the path, while the second
part is done along the path . Generally, the Green’s functions
change rapidly in the first part , while decay smoothly
in the second part ; thus, we choose more samples and
exponentials to perform the approximation in the first part.

The main steps of the two-level approximation are outlined
as follows.

Step 1) Choose and such that and ,
where is a number small enough such that we can
ignore values smaller than(typically, ).

Step 2) Choose and the number of samples on .
The choice of is very critical, and it determines
the precision of the approximation.

Step 3) Sample the function along the path and
approximate it by using the GPOF method so that

on

Step 4) Subtract from the original function on
. (We ignore the difference when

, i.e., on .)
Step 5) Sample the function uniformly along

the path and approximate it by using the GPOF
method as follows:

on

After the above steps, we obtain

(15)

and the same procedure is followed for when .
In one of the previous complex image methods, all the quasi-

static images [5] and SWPs [2], [5] were extracted from the
spectral-domain Green’s function and then the remainder
was approximated by a series of complex exponentials using
the Prony’s method [5]. It is true that the approximation using
the Prony’s method gives accurate results with the extraction of
the quasi-static images and SWP. However, there is no general
method to find the quasi-static images of the Green’s functions
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Fig. 3. Amplitude of the SIS [f ] for two cases. (a) Frequency= 6:88 GHz.
Substrate height(h) = 0:64 mm, " = 10:2. (b) Frequency= 11:6 GHz.
Substrate height(h) = 0:64 mm," = 10:2.

Fig. 4. Amplitude of the SIS [f ] for two cases. (a) Frequency= 6:88 GHz.
Substrate height(h) = 0:64 mm, " = 10:2. (b) Frequency= 11:6 GHz.
Substrate height(h) = 0:64 mm," = 10:2.

of multilayer structures. We have avoided this problem by using
the GPOF method. We have found that GPOF method gives ac-
curate results even without the extraction of quasi-static images
and SWP. For example, the results in Figs. 3 and 4 were gener-
ated without such extraction.

IV. RESULTS

The technique presented here can be used to evaluate the
spatial-domain Green’s functions for multilayer geometries
having an arbitrary number of layers with arbitrary parame-
ters and general (electric or magnetic, horizontal or vertical)
sources. To verify the accuracy of our extended complex images
method, two numerical examples for single-layer structures are
presented in this section and our results are compared with the
almost exact results obtained from the numerical integration.
One of the examples is the type, and it is related
to the . The second is the type, which is
related to the derivative of the . The example functions
are the spectral-domain Green’s functions associated with
single-layer microstrip structures, given by [1], [2]

(16)

(17)

TABLE I
PARAMETERS FORAPPROXIMATION BY THE GPOF

where

These two examples are evaluated using two different sets of
parameters. Table I lists the and we choose for these
calculations.

In Table I, and are the number of
samples in the first and second parts of the approximation,
respectively, and and are the number of exponen-
tials used in the first and second parts of the approximation,
respectively.

Figs. 3 and 4 show the amplitudes of the two SIs computed
by the approximate method in this paper and by the numerical
integration (almost exact). It can be seen that the results from
the two methods compare very well. It should be noted that
each numerical integration takes more than 1 min in a typical
workstation, but the new method gives results in a fraction of a
second.

V. CONCLUSION

We have presented a new more flexible complex image
method based on a class of semi-infinite integrals of Bessel
functions, for the evaluation of SIs encountered in Green’s
functions, and their derivatives of layered structures. Through
the use of a two-level approximation of the spectral-domain
Green’s functions, closed-form expressions have been derived
for the SIs. This method can handle both and
type SIs. The resulting closed-form solutions can be directly
used in the MoM without additional approximations. It is
significantly faster than the numerical integration method,
but it gives accurate results. Numerical examples of the new
closed-form Green’s functions have been presented. The
results are compared with accurate results from the numerical
integration method and a very good agreement is observed.

APPENDIX

Alternative integrals for the case, i.e., , are as
follows:

(A1)

(A2)
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Alternative integrals for the case, i.e., , are as fol-
lows:

(A3)

(A4)
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